
NOTATION 

~, ~, y, 6, critical indices; A, A', A I, A2, B, F, F', D, critical amplitudes; a, k, 
b, coefficients of the linear model of the parametric equation of state; r, e, parameteric 
variables determining the distance to the critical point and the path by which it is ap- 
proached; p, chemical potential; p, density; T, temperature; p, pressure; Zcr = PcrVcr/RTcr, 
compressibility coefficient at the critical point; R, universal gas constant. 
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MEASUREMENT OF THE THERMAL DIFFUSIVITY IN CONDITIONS OF SUBSONIC HEATING. 

CALCULATION OF DYNAMIC CORRECTION 

V. I. Gorbatov, S. A. Ii'inykh, 
S. G. Taluts, and V. E. Zinov'ev 

UDC 536.2.08 

Corrections associated with the rate of change in mean temperature are calculated 
for the dynamic method of plane temperature waves. It is shown that the correction 
is only significant close to the points of phase transition and at heating rates 
above I000 K/sec. 

The dynamic method of plane temperature waves was proposed in [i] for the investigation 
of the thermophysical characteristics of materials. A sample in the form of a thin plane- 
parallel plate is heated at a rate of up to i000 K/sec with a modulation period of the temp- 
erature wave of no more than I0 msec, which allows the thermal diffusivity to be measured 
over a broad temperature range in a time of less than 1 sec. The creation of this method 
permits a reduction by two or three orders of magnitude in the time to measure the tempera- 
ture dependence of the thermal diffusivity and allows informtion to be obtained in the temp- 
erature range where the sample cannot retain its form and state for a long time, i.e., close 
to phase and structural transformations. However, the possibility of using the information 
obtained for determining the temperature dependence of the thermophysical characteristics 
in this temperature range requires separate theoretical investigation. The point is that 
all the traditional nonsteady methods are based on solving linear or linearized heat-conduction 
equation and therefore the working region of the temperature intervals is always limited. 
Expansion of the region of application of nonsteady methods requires the solution of complex 
nonlinear heat-conduction equations, taking account of all the factors responsible for this 
nonlinearity. Analytical methods of solving problems of this type have not yet been adequate- 
ly developed. At the same time, computer solution of such problems by numerical methods 
does not present any difficulties. 

All the results of the present work are obtained using a "machine" experiment: essen- 
tially, the phhsical process used to measure the thermophysical coefficients is replaced by 
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a mathematical model and the quantities bearing information on the process are determined on 
a computer. In addition, this scheme allows the error in themeasurement method associated 
with its relization on a specific apparatus (edge effects, nonisothermal conditions over the 
area of the sample, etc.)to be taken into account 

The basic idea of the dynamic method of plane temperature waves for measuring the therm- 
al diffusivity is as follows. On one side of an infinite plane-parallel plate, there acts 
a time-varying flux 

q (T) = qo -t- Vx -+- qm cos (2nv~), 

exciting a temperature wave, which propagates to the opposite boundary. At this boundary, 
the temperature variation and phase shift between the oscillatiosn of temperature and heat 
flux is recorded. Both these quantities bear information on the temperature dependence of 
the thermal diffusivity. At the boundaries of the plate, radiant heat transfer occurs. Ini- 
tially, the heat fluxes from the boundaries are compensated by the heat flux qQ. There are 
no convective heat fluxes. 

For highly intensive nonsteady heat-transfer processes, it must be taken into account 
that the heat propagates at a rate which, although very large, is still finite (the rate of 
heat propagation is eual to the sound velocity according to literature data). Heat transfer 
is described here by the generalized Fourier law [2] 

OT Oq (1)  
q =--~----Tr 

Ox O~ 

The relaxation time ~r appearing in this expression is related to the rate of heat propagation 
v as ~r = a/v2; for metals, for example, iron, it is around i0 -II sec. The characteristic 
time of variation in heat-flux density in this case is the modulation period of temperature 
oscillations and, since ~ch >> ~r, the second term on theright-hand side of Eq. (i) may beneglected. 

Under the given assumptions, the process is modeled by the following boundary problem 
for the equations of nonlinear heat conduction [2] 

c(T)?(T) oT 0 [L(T) OT ] 
o ~ - -  o~  --aT- ' (2 )  

- -  ;~ (T) ~xX lx=o = qO -l- V'~ q- qra COS (2~';~) - -  ecY (T~ - -  T4e), 

OT[ 
- ~ ( r ) - z f [  ~=~ : ~~ (r~ - T~), 

T (x, O) = T~o (x). 

(3) 

(4) 

( 5 )  

The solution is constructed using an implicit finite-difference approximation scheme 
[3] for the system in Eqs. (2)-(5) 

(T~+~ - -  T,0 . (T~ - -  T,~_i) 
Ax,~+~ + , ( \~+__) c(T.)  ~ (r . )_  Ax. ( T . - -  Tn% = " ~  Ax~ 'X + Ax,, Ax._~ ' 

A'~ / 2)~,~+t 2~,, ! 2~,~_1 (6)  

)~(T,,) (To- -T-O = eot'T-Z-a*-l/21"3 T-x/z--aoToe ,4 
Axo ( 7 ) 

- -  / ' T ' - A T  \ 3  ~'(TN) (T N T~v_O = qo -b Vx-Jc qm cos(2a~,x) - -  e(yt~N_l/2 j TN-I/2 Ac eaT4oe, 
Ax N 

(8) 

where n = 0, i, 2, ..., N - i. 

This scheme is absolutely stable, does not introduce limitations on the relation between 
the calculation-scheme steps, and approximates the initial Eq. (2) with an error of order 
0(Ax2). The system of algebraic Eqs. (6)-(8) is solved using the fitting method [3]. This 
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computational algorithm is convenient in that its realization results in a small number of 
arithmetical operations (reduces the computation time) and has weak sensitivity to the compu- 
tational error. 

The temperature wave is isolated by subtracting from the general solution of the problem 
in Eqs. (2)-(5) the solution of the sample problem with zero amplitude of the heat-flux oscil- 
lations. The result is subjected to harmonic analysis. 

Thus, knowing the law of heat-flux variation and specifying the dependence of the thermo- 
physical properties on the temperature and plate geometry, the nonsteady temperature fields 
and angle of phase shift between the oscillations of the heat flux and the phase lag of the 
temperature wave at any moment of time may be obtained. The error in determining the phase 
shift depends basically on the error in approximating the system in Eqs. (2)-(4). Decrease 
in the division step of the coordinate Ax and time A~ leads, on the one hand, to decrease 
in the error and, on the other, to increase in the overall time of machine calculation. There- 
fore, the optimal conditions of calculation are chosen so that the results of analytical cal- 
culation of the phase shift of the linear heat-conduction problem and the results of numerical 
solution of this problme difer by no more than 1%. 

Calculations are made for various ranges of parameter variation: heat flux velocity V = 
0-2.107 W/m2-sec; oscillation frequency of heat flux u = 100-200 Hz; thermal conductivity 

= 10-250 W/m.K when (I/~)(8~/8T) = 0-0.05 K-I; the specific heat c = 0.04-4 kJ/kg.K when 
(i/c)(8c/8T) = 0-0.05 K-z; the temperature T = 1000-3000 K; emissivity ~ = 0-I. 

The plate thickness is 1.8.10 -4 m. The mean heating rate is in the range 0-5000 K/sec. 
The maximum values of the heat flux q(T) and phase shift ~ are no more than 5.106 W/m 2 and 
2s rad, respectively. The amplitude of heat-flux oscillations is taken to be 5.104 W/m 2. 

The Stark number, charaterizing the relation between the temperature field in the solid 
and the conditions of radiant heat transfer at its surface 

s~Ta6 
S t =  --<2-I0 -z 

for the whole range of variation of the parameters appearing there. 

The primary aim of the given numerical experiments is to elucidate the functional depend- 
ence of the phase shift betrween the heat-flux oscillations and the temperature oscillations 
at the surface opposite to the heated surface on the dimensional parameter 

2~ 
Pd -- 6 2 

a 

in the case where the heat conduction and specific heat depend continuously on the temperature, 
and the thermal diffusivity remains constant 

rt(T--S AT) = a(T), AT--~-0, ( 9 )  

while the functions ~(T) and c(T) have a continuous first derivative with respect to the temp- 
erature. Using the definition of the thermal diffusivity for the given temperature in the 
form 

a(T) % ( T ) ,  
yc(T) 

it is found that Eq. (9) is satisfied when 

1 a% I ac 

OT c OT 

The dependence Pd = f( ~ , St) calculated in this way for different heating rates com- 
pletely coincides with the analogous dependences obtained for quasi-steady conditions and 
constnat values of %, c, a, [4]. This allows the relation 

2~v8 z 
a~ (T) = 

(1,414~ ( T ) - -  1,11) z ( 1 0 )  

obtained in [4] to be used in subsequent numerical experiments to determine the temperature 
dependence of the thermal diffusivity with respect to the phase shift of the temperature wave. 
The specified function a(T) will play the role of true thermal-diffusivity values here, and 
the dynamic correction takes the form of the difference between a(T) and aT(T), i.e., a(T) = 
a ( T )  - a T ( T ) .  
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Fig. i. Dependence of the thermal diffusivity and the relative 
error on the temperature; the continuous curve correspond to the 
data of [5] and the points to theoretical values: I) V = 4-106 W/ 
m2"sec, To = 1040 K; 2) 4.107 , 1040; 3) 4.10 ?, 1000; below the T 
axis, a/~ is negative. 

It follows from the complete set of calculations above that the dynamic correction is 
determined by a combination of all the specified parameters and, in addition, by the method 
of determining the temperature corresponding to the phase shift which appears in Eq. (I0). 
In experimental measurement of the thermal diffusivity in dynamic conditions, the method of 
plane temperature waves is used to measure the temperature at the surface opposite the heated 
surface. Therefore, taking the mean temperature of this surface over theperiod of heat-flux 
oscillation as the reference temperature, the dynamic correciton may be estimated from the 
formula 

] Oa. + _ _  . 

~(r)= 2 or 2~(r) (11) 

The first term in the square brackets is the temperature variation over time in the modulation 
period and the second is the temperature difference over the plate thickness, which is signi- 
ficant with unilateral heating at a high temperature level, even for thin metallic samples, 
and may exceed the temperature variation in the modulation period. 

For example, for v = 160 Hz, a0 = 3-52"10-6 m2/sec, k0 = 15 W/m.K, T o = 1773 K, V = 4.106 
W/m2.sec, (i/ao)(Sa/ST) = 0.01, (i/k0)(8%/ST) = 0.01, and mean heating rate -1600 K/sec, the 
temperature difference over the platethickness is ~10 K. Numerical experiment and calcula- 
tion by Eq. (ii)give a(T)/a(T) of ~6 and ~10%, respectively. 

The temperature dependence of the thermal diffusivity of iron close to the Curie point 
is shown in Fig. i. The basic values of this coefficient obtained in quasi-steady condi- 
tions are taken from [5]. The results of numerical experiment are given for two heat-flux 
velocities and two initial values of the plate temperature. It is evident that, in the vicin- 
ity of the Curie point, for mean heating rates of ~200 and ~1600 K/sec, the error in determin 
ing the thermal diffusivity is ~3 and ~7%, respectively. On sections of smooth variation, 
it is no more than ~3.5%. Note, however, that this error is associated only with the dynam- 
ics of the process is an additional error to the result obtained in quasisteady conditions. 

Thus, it is found that the method of plane temperature waves in dynamic conditions al- 
lows the thermal diffusivity of the materials to be measured close to points of phase transi- 
tion and structural transformation. The methodological error in the given case depends on 
the heating temperature and the temperature gradient over the sample thickness, the maximum 
value of which may be estimated from Eq. (ii). In the temperature intervals where (i/~)(Sa/ 
ST) << 0.01, the methodological error is practically independent of the heating rate and is 
no more than 2.5% over the whole of the specified range of temperature variation. 
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NOTATION 

q, heat-flux density, W/m2; V, rate of increase in heat-flux density, W/m2.sec; VT, heat- 
ing rate, K/sec; qm, amplitude of oscillations in heat-flux density, W/m2; v, modulation fre- 
quanty, Hz; T, time, sec; T, temperature, K; Toe, temperature of medium, K; T10, initial temp- 
erature distribution, K; q0, initial heat-flux density, W/m2; x, coordinate, m; c, specific 
heat, J/kg.K; 7, density, kg/m3; ~, thermal conductivity, W/m.K; r integral emissivity; o, 
Stefan-Boltzmann constant, W/m2.K 4, n, step number; 6, plate thickness, m; St, Stark number, 
a, thermal diffusivity; m2/sec; e = 2~v, cyclic frequency, rad/sec; Pd, Predvoditelev number; 
~, phase shift, rad. 
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DYNAMICS OF THE DRAWING ZONE OF A LIGHTGUIDE BLANK FOR DIFFERENT DRAWING 

REGIMES WITH FURNACE AND lASER HEATING 

E. M. Dianov, V. V. Kashin, 
S. M. Perminov, V. N. Perminova, 
S. Ya. Rusanov, and V. K. Sysoev 

UDC 532.51.532.522 

The results of numerical modeling of the process of drawing a quartz blank into a 
lightguide with different mehtods of heating are presented. The optimal regions of 
the space of drawing parameters for obtaining a stable lightguide diameter are de- 
termined. 

Introduction. In preparing fiber lightguides by the method of drawing from a blank (rod) 
many physical problems must be solved. One particular problem is to investigate the behavior 
of the zone of drawing between the blank and the lightguide, the so-called "onion." This 
question is of interest because the basic characteristics of the lightguide obtained are deter- 
mined precisely by the zone of formation. In particular, the stability of the diameter along 
the lightguide depends on the character of the oscillation of the onion during the drawing 
process. For this reason much attention is devoted in the experimental and theoretical works 
to the behavior of the onion [1-6]. 

We performed a series of numerical experiments devoted to this question. The process 
of drawing a quartz blank into a lightguide [9, i0] was modeled by applying to this problem 
the methods of numerical simulation fo the motion of a viscous incompressible liquid bounded 
by a "free surface" [7, 8]. The motion of the quartz glass was regarded as a vertical, axi- 
symmetric, nonstationary motion of a liquid bounded by a "free surface." All experimentally 
recorded situations were simulated, namely, stable continuous drawing of a blank into a light- 
guide, break off of the lightguide owing to capillary decomposition accompanying overheating 
of the drawing zone, and break off owing to underheating (viscous fracture). Thus it was es- 
tablished in [i0] that an arbitrary combination of technological parameters is suitble for 
drawing. On the contrary, in the space of technological parametes of the drawing process 
there exist "allowed" and "forbidden" regions for the operation. 

In this paper we investigate the dynamics of the behavior of the onion within the regions 
of parameters "allowed" for drawing for two basic methods of drawing - laser and furnace heating. 
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